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Abstract

Recent traffic studies of high-resolution, high quality traffic measurements have re-

vealed the phenomenon of long-range dependence in network traffic. The implication

of the presence of long-range dependence in traffic is that actual network traffic exhibits

more bursty behavior compared to traditional ”Poisson-like” models. Traffic modeling

and performance prediction in networks with long-range dependent flows is required

for the design of efficient congestion control, routing and other network management

algorithms. Here a non-Markovian phase process is used to model the traffic process.

The phase process captures the macro-dynamic properties of the traffic. The traffic

dynamics within each phase i.e., the traffic micro-dynamics, are then described by a

random process with finite mean and variance. Network performance using this model

has been evaluated in the form of delay vs load curves and cell loss ratio vs buffer size.

By capturing the burstiness of the network traffic in the form of traffic macro-dynamics,

the model developed here predicts ATM queue performance in network flows that may

be inherently long-range dependent in nature. Extensive simulations based on traces of

traffic collected from a wide area ATM network has been used to validate the devel-

oped model and performance analysis methodology. Also the effects of traffic micro-

dynamics on performance has been investigated within the frame work of the developed

model. It has been observed that the mean delay is not sensitive to the specific nature

of the micro-dynamics while the cell loss is affected by the traffic micro-dynamics.
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Chapter 1

Introduction

Broadband networks of the future will carry audio,video and data traffic from many di-

verse applications. Such networks will need to meet a variety of traffic and performance

requirements. Asynchronous Transfer Mode (ATM) has been chosen as the technology

to implement B-ISDN. Details about ATM will not be discussed here but can be found

in [34]. ATM offers many advantages like bandwidth on demand, Quality of Service

(QoS) guarantees etc., which facilitate many new application like multi-media. The

integration of traffic from many different types of applications is expected to generate

traffic having complex temporal characteristics. In particular broadband network traf-

fic has a complex correlation structure that spans often a wide range of time -scales.

Such long-range dependence is not taken into consideration in traditional Markovian

models. Thus, conventional traffic models yield system performance predictions that

are significantly different from what would actually be obtained in a real networking

environment.

Several recent traffic studies [7], [8], [9], have reported that correlation in the traf-

fic arrival process has a significant impact on the network resource management and

network performance evaluation. Particularly it has been observed that long range
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dependence in the input traffic process dominates the queueing performance. In the

context of network traffic, long-range dependence implies that even if the number of

packet arrivals is aggregated over larger and larger time-scales, the aggregated process

will not smooth out as is expected with finite variance processes like Poisson process

or short-range memory processes like Markov-Modulated Poisson Processes.

The benefits of ATM like QoS guarantees, scalability come at a price. Contrary to

common misconceptions, ATM is a very complex technology, perhaps the most com-

plex ever developed by the networking industry [22]. ATM signaling protocols and

routing protocols indicate the complexity involved with the technology. The increased

complexity of operation of ATM networks is expected to generate a significant amount

of management traffic in these networks. In this context, accurate modeling of traffic

and studying its performance on queueing is an issue of interest.

1.1 Traffic Models

Network traffic can be characterized by a rate process. The rate process is a random

processR(t), defined as the short term time average of the random processA(t), which

represents the arrival process. The arrival processA(t) denotes the number arrivals at a

point in the network, at timet. The rate process can be expressed as:

R(t) =
[A(t +�t)� A(t)]

�t
(1.1)

where,

A(t) is the cell count at timet.

R(t) is the throughput at timet.

2



Traffic modeling aims at developing mathematically tractable models of network

traffic with a view to capture important parameters that have impact on the queueing

performance. The queueing performance for broadband networks is usually quantified

in terms of the mean delay experienced by cells arriving at the input to the queuing sys-

tem and the cell loss probability which represents the percentage of cells that were not

transmitted successfully from the queueing system. As shown in Equation (1.2) the cell

loss probabilityPl in a finite buffer queueing system of sizeN is often approximated

by P (Q > N) in the corresponding infinite buffer system [33].

Pl � P (Q > N) (1.2)

Q is a random variable representing the queue length.

N is the size of the finite buffer.

Note thatP (Q > N) represents the tail of the queue length distribution and hence

provides a conservative estimate of the upper bound for the cell loss probability. Fig-

ures 1.1 and 1.2 show the typical mean cell delay curves and cell loss probability curves

respectively, that would be obtained from a short-range dependent model and that from

a model that takes into account long-range dependence. In Figures 1.1 and 1.2 curve

(A) is the performance profile predicted by a conventional traffic model and curve (B)

shows the corresponding profile that would typically be obtained from a long range

dependent model. Note that the delay curve obtained from a conventional traffic model

predicts useful operation for utilization values close to 1. Similarly, in Figure 1.2 the

curve representing the logarithm of the cell loss ratio plotted against the buffer size

bears a non-linear relationship in the case of long range dependence. Since many recent

traffic studies like [7], [8], [9] have confirmed the presence of long-range dependence

3



in network traces, performance curves shown by (B) in Figures 1.1 and 1.2 can be ex-

pected to characterize mean cell delay and cell loss probability observed in operational

broadband networks. Figures 1.1 and 1.2 clearly indicate that conventional traffic mod-

els cannot be used for performance evaluation of real network traces and there is a need

to develop alternative traffic models for performance evaluation.

Clearly, traffic modeling and performance prediction is required for the design of

efficient congestion control, routing and other network management algorithms. Traf-

fic modeling and performance prediction is in general a hard problem and involves

computationally intensive procedures. The traffic arrival processes cannot be matched

exactly. Models developed in literature aim at capturing the first order and second order

statistics of the rate process (defined by Equation (1.1)). Some of the approaches avail-

able in literature for modeling network traffic are Markov Modulated Poisson process

(MMPP) [26], Circulant Modulated Rate process (CMRP), Auto Regressive Moving

Average (ARMA) process. The above mentioned models can be considered traditional

in the sense that these models assume the arrival rate process to have a finite mean

and finite variance. Recent traffic studies have convincingly established the presence of

long-range dependence in network traffic. Notable among the studies available in liter-

ature are the studies by [7], [8], [9]. The ratio between the maximum rate and average

rate is measure of the traffic burstiness. The implication of the presence of long-range

dependence in traffic is that actual network traffic is burstier than that predicted by tra-

ditional ”Poisson-like” models. Burstiness impacts many aspects of congestion control

and traffic performance. Contrary to the behavior assumed by standard traffic models,

aggregate traffic in networks with long-range dependent flows, becomes burstier as the

number of active sources increases. Switch buffers having a long-range dependent ar-

rival process as input get filled up faster than those predicted by assuming a Poisson

like arrival process. Common approaches for modeling long-range dependent traffic

4
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(A)

1Load

Mean Delay

(B)

Figure 1.1: Typical Delay curves for long-range dependent model (B) and conventional
model (A).

include Fractional Brownian Motion (FBM) [24], Fractional auto regressive integrated

moving average processes (ARIMA), chaotic maps [25].

The origin of long-range dependence has been explained in [27] in the frame work

of the familiar ON-OFF source model. Real traffic sources are different from exist-

ing models as the sojourn times in the ON and OFF states of real sources, follows

a long-range dependent process like Pareto etc., contrary to that assumed in standard

statistical ON-OFF models. The difference in the sojourn times, results in traffic that

is considerably more bursty compared to traffic generated by a conventional ON-OFF

source.

1.2 Definition and Characteristics

As long-range dependence has been demonstrated to be an important issue in perfor-

mance evaluation and traffic modeling in networks, this section deals with, the defini-
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P(Q>x)

Buffer Size

log(

, x

(B)

(A)

)

Figure 1.2: Typical loss curves for long-range dependent model (B) and conventional
model (A).

tion and the main characteristics of a long-range dependent process.

LetX = (Xt, t= 0, 1, 2...) be a covariance stationary process with mean�, variance

�2 and autocorrelation functionr(k), k > 0. Further suppose thatX(m) = (Xk
(m) , k=

1, 2, 3,...; m= 1, 2, 3, ....) be a derived covariance stationary process which is obtained

by averagingX over non-overlapping blocks of sizem. Therefore, according to the

definition,X(m) is given by:

Xk
(m) =

1

m

m�1X
i=0

Xkm�i (1.3)

Let r(m) be the auto-correlation function ofX(m). The processX is called exactly

self-similar if

r(m)(k) = r(k); k � 0 (1.4)

6



the processX is called asymptotically self similar if for large values ofk

r(m)(k)! r(k); m!1 (1.5)

Mathematically, self-similarity manifests in the following equivalent ways [9].

The autocorrelation function of the rate process decays slowly, that is the auto-

correlation function decays hyperbolically rather than exponentially, implying a non-

summable auto-correlation function, which in turn indicates that the process has infinite

variance. The auto-correlation function of a general long-range dependent process can

be expressed as:

r(k) � k��G(t); k!1 (1.6)

where0 < � < 1 andG(t) is a slowly varying function of time. A slowly varying

function of time can be defined as:

lim
t!1

G(tx)

G(t)
= 1; x > 0 (1.7)

Equations 1.6 and 1.7 imply that the auto-correlation function of the rate process is

non-summable i.e.,
X

r(k) =1

In the frequency domain the power spectral density function obeys a power law near

the origin. IfP (!) denotes the power spectral density, thenP (!)!1 as! ! 0.

Several methods are used to detect self-similarity and estimate the degree of self

similarity. Popular techniques include the time domain analysis based on the R/S statis-

7



tic, analysis of the variances of the aggregate processesX(m), Whittle’s periodogram

based analysis in the frequency domain. Detailed definitions and tests for self-similarity

can be found in [9] and [28].

1.3 Contributions of this Thesis

In this section an outline of the model developed is given and the main contributions of

this research are listed. In this thesis a new model as well as a new performance evalua-

tion methodology are developed which accurately capture the queueing performance of

observed traffic in a wide area high speed ATM network. The model is a non-Markovian

phase modulated process(representing the macro-dynamics of the process) where the

dynamics of the arrival process in each phase are described by a random process which

has a finite mean and finite variance (which characterize the micro-dynamics of the

process). The steady state probabilities of being in each state are determined from an

appropriate long-range dependent distribution for the rate process. The rate process

is the short term time average of the number of cell arrivals. More details about the

rate process are included on page 2. The characteristics of the long-range dependent

component of this model may be obtained in several ways:

1. A form for the distribution may be assumed and its parameters estimated or

2. An estimated histogram may be used.

Both these methods will be used here.

The durations of each states of the phase process are proportional to the steady state

probability of being in that state. Network performance using the model is presented

in the form of delay vs load curves and logarithm of the cell loss ratio vs buffer size.

The knee of the delay curve is important from a traffic engineering perspective as it
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represents a bound on the useful utilizations in the queueing system. The model devel-

oped in this thesis is shown to accurately represent the behavior of the knee of the delay

curve. The main contributions of this study are given below:

� Many traffic studies have convincingly established the non-Poisson nature of net-

work traffic in many networks. This research establishes the non-Poisson nature

of traffic on an early national scale ATM network, the AAI network. AAI stands

for ACTS ATM Internetwork.

� A simple traffic model is developed for traffic in high speed wide area ATM

networks.

� A performance analysis technique is developed to estimate:

1. the mean cell transfer delay and

2. cell loss ratio at a queueing system.

� The developed performance methodology is validated using traffic measurements

from the AAI wide area network.

� The effects of traffic micro-dynamics on performance in terms of mean cell delay

and cell loss ratio are investigated in the frame work of the developed model.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows:

1. In Chapter 2 the analytical traffic model that is developed is presented. The dif-

ferent network traffic parameters that define the model along with the method for

estimating the parameters is also presented.
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2. Chapter 3 discusses the performance evaluation methodology developed. Results

from the theory of discrete queues are used to evaluate the performance of a

queueing system in terms of the mean cell delay and cell loss ratio.

3. Chapter 4 deals with the AAI network and the data collection process being per-

formed on the AAI network. Detailed configuration of the AAI network, the sites

involved in the monitoring process and information on the tools used for data col-

lection is presented. Some observations of the traffic profiles are also given in this

chapter.

4. Chapter 5 describes the simulation model developed in this research. This simu-

lation model was used measure the queueing performance based on the collected

trace data. Information on the queue simulator which was developed and valida-

tion of the simulator are presented. The validation is done by obtaining mean cell

delay values for an exponential source using the simulator and comparing the val-

ues obtained with standard theoretical results. A similar methodology has been

used for validating the cell loss ratio results obtained from simulations based on

collected network traces, using the developed simulator.

5. Experimental evaluation of the model and the performance evaluation technique

are done in Chapter 6. Experimental queueing results from simulations and ana-

lytical results from the developed model are presented in this chapter. The results

are presented in the form of delay and loss profiles of the appropriate queueing

system. In addition the delay and loss curves are obtained by assuming the Cu-

mulative Distribution Function of the rate process follows Pareto distributions.

Chapter 6 also examines the effect of traffic micro-dynamics on queueing perfor-

mance.
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6. Several conclusions from this research are discussed in Chapter 7. Some recom-

mendations for future work are also included.
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Chapter 2

Analytical Model

2.1 Background

In this chapter an analytical model for traffic in high speed wide area ATM networks is

proposed. The traffic is modeled as a phase modulated process in which the long-range

dependence, is captured in the state probabilities of the phase process. Many recent

traffic studies [8] have convincingly established the presence of long range dependence

in network traffic. A common approach in literature for modeling long range depen-

dency is through the use of self-similar processes, e.g., fractional Brownian motion.

However, such models are complex and queueing response cannot be obtained effec-

tively using such models [17], [26], [24], [25]. In this thesis results from the theory of

discrete queues, are used to develop an analytically tractable model for modeling traffic

in high speed networks.

Formally (as given in [13]) the first-order statistics of a long range dependent pro-

cess can be defined as follows:

Definition 1 A distribution functionFX of a random variableX on [0;1) is called

12



long-tailed if

lim
x!1

1� FX(x� y)

1� FX(x)
= 1; y 2 R:

From the definition and from the main characteristics of long-range dependent pro-

cesses that were described in Chapter 1, it can be seen that long range dependent pro-

cesses decay slower than exponential processes. The long tailed random processes are

associated with infinite variance and either finite or infinite mean. The processes are

also referred to asNon�Cramer type [11], [12]. The queueing techniques developed

under the general assumptions of aCramer� type [11], [12] process are based on the

Moment Generating Function techniques [1], [2], [3] or Matrix-Geometric Techniques

[4], [5]. Each of these techniques has its own advantages. The moment generating

function of a random variableX is defined as:

Definition 2 If X is a random variable then the moment generating function (MGF),

M(�) of X is defined asM(�) = E[e�x].

From Definitions 1 and 2 it can be seen that the MGF of a long-tailed random pro-

cess is infinity. Because of the non-existence ofM(�) for long-range dependent pro-

cesses, regular queueing techniques cannot be applied to study the dynamics of these

processes. A model is proposed here such that, the dynamics of the rate process in each

state are under the general class ofCramer � type processes, but the probabilities of

being in a givenCramer state is obtained from the inherent characteristics of the long

range dependent traffic. Such a model, as demonstrated here is useful for modeling

long-range dependence in network traffic. The proposed model is also seen to capture

the second-order statistics of the rate process. An excellent treatment of queueing the-

ory for a discrete time queue is given in [1], on which most of the results used in this
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report are based on.

2.2 Traffic Model

In this section the analytical model and the procedure for obtaining the model param-

eters is presented. Let the random processR(t) denote the rate process of the traffic,

which is defined as the short term time average of the random variable representing the

number of cell arrivals at a specific point in the network. The detailed definition of

the rate process and an explanation about its measurement from cell counts is given in

Section 4.2. Results from queueing theory are then employed in obtaining analytical

expressions to estimate the performance metrics like the mean cell transfer delay and

cell loss ratio at a queueing system whose input process is the random processR(t), the

process being modeled. Here the arrival rate process is modeled as being modulated

by a phase process. Assume that the phase-process is stationary and ergodic having

a finite state spaceS=fx1; x2; :::xNg. This phase-process captures the macro-dynamic

properties of the rate process. Within each statexi 2 S, the arrival process is assumed

to follow a point process with a distribution with a finite mean and variance. The

distribution function of the rate process associated with each state defines the traffic

micro-dynamics of that state.

The steady state phase probabilities of the stationary phase process are assumed

to follow a distribution with a heavy tail i.e., infinite variance. The variables which

characterize the process considered here are:

1. The steady state probability vector�� = [�1; �2; :::; �N ], where�i = P (S = xi).

2. The rate vector�
 = [
0; 
1; :::; 
N ] where
1 � 
2 � :::: � 
N+1 represent the

boundary rates (in cells/sec) for each statex1; x2; :::xN
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Here we assume that the mean sojourn time in each state of the phase process is pro-

portional to the steady state probability of being in that state. Within each state say state

xi the arrival process is assumed to haveCramer � type characteristics, example, ex-

ponential, uniform etc., with mean arrival rate equal to
i+1. Note that
i+1 is the upper

bound on the rates for statexi and is thus a conservative assumption for performance

modeling. The state probabilities themselves are obtained from anon� Cramer type

distribution having infinite variance. In this work a Pareto distribution is used, how-

ever, any infinite variance process may be assumed to obtain the state probabilities. In

particular rate histograms estimated from network trace data have also been used in

this work to determine the appropriate state probabilities. It should be noted that in

[7], the authors report from empirical findings the usefulness of Pareto Distribution in

modeling collected network data that is inherently long range dependent in nature. The

results reported here will compare trace based simulations to performance predictions

obtained using Pareto and histogram derived state probabilities.

2.2.1 Procedure for obtaining the Rate vector

The vector�
 as defined above is obtained by partitioning the range of possible rates

into ’N’ sets or levels. The range of possible rates is lower bounded by
min and upper

bounded by
max. These are often the minimum and maximum rates observed in a

measured network trace. These values may also be derived by experience. This is

equivalent to quantizing the range of rates intoN levels.

Mathematically a partition is defined as given in Definition 3.

Definition 3 A partition� on a range� is defined as a collection of mutually exclu-

sive subsets�i of � whose unions equals�.
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Applying the definition of a partition as given by Definition 3 toR(t), partitioning

the random process results in quantizingR(t) intoN levels, where each level represents

a 0state0. Each partitioned set represents the set of rates associated with a given state.

The vector�
 for a given data trace is computed as follows. As mentioned before,

let the peak cell rate, minimum cell rate of the traffic be denoted as
max and
min

respectively. Given
max and
min the rate vector�
 is chosen such that:


1 = 
min (2.1)


i = 
1 +

max � 
min

N
; i = 2; 3; 4; :::; N (2.2)


N+1 = 
max: (2.3)

Note that Equations (2.1), (2.2) and ( 2.3) define a uniform quantizer on the random

processR(t) and also satisfy the definition of a partition given in Definition 3. The

inter-arrival times in each state which represent the traffic micro-scale dynamics of the

associated state are chosen to follow a fixed distribution with finite variance and mean


i+1, while in statexi. In this analysis it is assumed that the mean arrival rate associated

with statexi is 
i+1, which is the upper bound on the rates in that state. Note that the

assumption is conservative and results in an upper bound on any performance parameter

estimated using the model.
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2.2.2 Procedure for obtaining the Steady State Probability vector

Having obtained�
, the procedure used for obtaining the steady state probability vector

�� is now discussed. The vector�� is obtained by quantizing the CDF of the rate process

into levels. Two different ways of getting the CDF of the input process have been

considered as explained below:

In the presence of long-range dependence, the CDF of the rate process will be sim-

ilar to that of a heavy-tailed distribution F(.), like Pareto, Log-normal etc., with ap-

propriate parameters. Taking into account the versatility of a Pareto Distribution in

modeling network traffic, in this study a Pareto distribution is chosen to obtain an esti-

mate of the state probability vector��, for each of the states defined by the rate vector�


to obtain the stead state probability vector.

In the most general form, the Cumulative Distribution Function of a Pareto distri-

bution can be given as

FX(x) = 1�Kx��; � > 1; x > K: (2.4)

In Equation (2.4),K is the location parameter and� is the shape parameter describ-

ing the CDF of the Pareto distribution. The maximum likelihood estimate [37] of the

shape parameter�, for a given set of data samplesD = fd1; d2; ::; dMg is given by

Equation (2.5) as

� =
1

1
M

PM
i=1 ln(di)

(2.5)

The value of the location parameter K, is then determined such that the area un-

der the probability density function of the Pareto distribution equals unity. The shape

parameter can also be estimated empericaly form experience.
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The state probability vector,��, may also be obtained from an empirical CDF of

the rate process obtained from collected network trace data. Suppose that the random

processR(t) which denotes the rate process of the collected trace, has a CDF such as

that shown in Figure 2.1. This CDF is quantized intoN levels at the rate values defined

by �
, to obtain the steady state probability vector.

After obtaining the CDF of the rate process either from the theoretical Pareto dis-

tribution or from the histogram, the steady state probability�i for statexi, which is

bounded by rates
i and
i+1 can be computed as:

�i = P [X � 
i+1]� P [X � 
i]; i = 1; 2; 3:::; N � 1 (2.6)

= FX(
i+1)� FX(
i); i = 1; 2; 3:::; N � 1 (2.7)

Observe that from Equations (2.6) and (2.7) the information in the CDF of the rate

process is now captured in the state probability vector��. A small set of parameters can

be used in this model to describe the traffic flow. The number of states, the server rate

�, minimum and maximum rates (
min; 
max) and the shape parameter� are needed to

model the flow. Of these parameters,� can be fixed at xx, and thus only three statistics

must be estimated to predict the delay and loss performance of the queue.
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Figure 2.1: Partitioning the Rate Process into states.
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Chapter 3

Performance Analysis Methodology

In this chapter a performance analysis technique is developed based on the model de-

rived in the previous chapter. The performance metrics of interest here are mean cell

delays and cell loss ratio. Before the performance method is explained, the analytical

model developed in Chapter 2 is summarized here as follows: Obtain the CDF of the

rate process. This is done in two ways: The CDF can be obtained as a theoretical dis-

tribution eg., a Pareto or can be calculated from a given collected data trace and based

on the resulting empirical histogram. Quantize the CDF into ’N’ levels, where leveli

is represented by rate
i+1 in the vector�
. Define theith statexi, to be represented by

levelsi and(i + 1). The probability of being in the statexi is given by the element

�i in the vector�� as�i = F(
i+1)-F(
i). The performance evaluation methodology is

systematically developed below. LetZ denote a random variable associated with a per-

formance parameter of the queue, havingR(t) as the input process. HereZ is delay or

loss probability. The objective of the performance analysis technique is to characterize

the random variableZ in terms of the properties ofR(t). In each of the states the arrival

process is assumed to follow a fixedCramer � type distribution with a given mean

arrival rate
i+1 for statexi i.e.,
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Figure 3.1: Concept for performance analysis methodology.

E[R(t)jithstate] = 
i+1 (3.1)

Within any given state of the input process say,xi, the queueing system behaves

as a slotted-G/ D/ 1 type of queue with mean arrival rate given by Equation (3.1).

Figure 3.1, illustrates the rate process in relation to the disjoint state space of the set

S=fx1; x2; :::xNg.

Given the linearity property of expected value, the expected value of the random

variableZ can be written as

E[Z] =
X
i2S

�iE[ZjS = xi] (3.2)

Note that Equation (3.2) represents the effect of traffic macro-dynamics as well as

the traffic-micro dynamics. The traffic macro-dynamics are described by the values of
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�� and the micro-dynamics are represented byE[ZjS = xi]. The macro-scale dynamics

capture the burstiness in the input trace.

In the remaining part of this chapter, the effect of micro-dynamics will be consid-

ered. Consider a queueing system in which the time is slotted. Assume the server to the

queue has a deterministic service time so that at the at the end of each slot a single cell

in the queue is served. Letn denote the number of cells in the system at a given time

andP i
n(j) represents the probability that there aren cells in the queue at the end of the

jth slot, given that the input process is in statexi. During each slot there are a random

number of arrivals to the queueing system. Letpik denote the probability that there are

k arrivals to the system when the input process is in statexi.

In order that the system may haven cells at the end of the(j + 1)st slot, there

should bek, 0 � k � n + 1 cells, present at the end of thejth slot andn � (k �

1)+ arrivals during thej + 1 slot, where(x)+ represents the maximum off0; xg. As

the queue depletes at a constant rate, the relationship between the cell arrivals to the

system and the number of cells in the system can be written as a recursive relation.

The relationship is commonly referred to in literature as Lindley’s recursion [14] and is

given in Equation (3.3). Finding the system occupancy involves solving the recursive

relation. An efficient solution technique is obtained by noting that a slotted queueing

system with a random number of arrivals in each slot falls under the M/ G/ 1 paradigm

of Nuets described in [5]. The PGF method, similar to that in [1] is used for solving the

equation.

P i
n(j + 1) =

n+1X
k=0

P i
k(j)p

i
n�(k�1)+ (3.3)
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3.1 Analysis of Mean Delay

LetQ be the random variable representing the length of a queue withR(t)jS = xi; i =

1; 2; :::; N as the input process. SupposeQi is the random variable associated with

the length of the queue given that the input process is in statexi. In this section the

analytical expression for predicting the queue length is obtained. The analysis given

in [1] is used here. The well known Little’s result is then used for obtaining a delay

estimate. DefineGi(z) to be the Probability Generating Function (PGF) of the number

of cells in the system, given that the input process is in statexi.

Gi(z) =
1X
n=0

znP i
n(j) (3.4)

Similarly defineFi(z) to be the PGF of the number of arrivals to the system during

a slot in which the arrival process is in statexi . Therefore

Fi(z) =
1X
k=0

zkpik (3.5)

From the above two equations asj !1, Gi(z) can be expressed as

Gi(z) = (z � 1)pi0Fi(z)[zI � Fi(z)]
�1 (3.6)

Differentiating equation(3.6) we get:

G
(1)
i (z)[zI � Fi(z)] +Gi(z)[I � F

(1)
i (z)] = pi0[Fi(z) + (z � 1)F

(1)
i (z)]
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(3:7)

whereH(n)(z) denotes thenth derivative of functionH(z) with respect toz

Differentiating equation(3.6) again

G
(2)
i (z)[zI � Fi(z)] + 2G

(1)
i (z)[I � F

(1)
i (z)]�Gi(z)F

(2)
i (z) = pi0[2F

(1)
i (z) + F

(2)
i (z)(z � 1)](3.8)

Taking the limit asz ! 1 in Equations (3.7) and (3.8), the expression forG
(1)
i (1)

can be obtained as

G
(1)
i (1) =

1

1� F
(1)
i (1)

f
1

2
F

(2)
i (1) + (2pi0 � 1)F

(1)
i (1) + [F

(1)
i (1)]2g (3.9)

Note thatG(1)
i (1) represents the mean number of cells in the system and Equation

(3.9) expresses the system occupancy in terms of known quantities with the exception

of pi0. Note thatpi0 represents the probability that the system is empty and is therefore

equal to the utilization of the system at the given load subtracted from unity. Also note

that sinceFi(z) is the PGF of the arrival process within a given slot,F
(1)
i (1) is the mean

of the arrival process in cells/slot andF (2)
i (1) can be expressed in terms of the mean and

variance of the arrival process as given in Equation (3.10). In order to ensure numerical

stability for an infinite buffer queue,F (1)
i (1), i 2 S, is assumed to be less than unity.

F
(2)
i (1) = �2

i + �2i � �i (3.10)

where

�i is the variance of the arrival process, given that the arrival process is in statexi.
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�i is the mean of the arrival process in cells/slot, in statexi.

The result of the analysis is stated as below: For a slotted-G/ D/ 1 queue the mean

number of cells in the queue can be described in terms of the arrival process as

E[Qi] = G
(1)
i (1) =

1

1� F
(1)
i (1)

f
1

2
F

(2)
i (1) + (2pi0 � 1)F

(1)
i (1) + [F

(1)
i (1)]2g (3.11)

Applying Little’s result and simplifying using Equation (3.10), final result of the

performance analysis is stated as:

E[D] =
1

�

NX
i=1

�i

1� �i
f
1

2
�2
i +

3

2
�2i g (3.12)

where

�=
PN

i=1 �i
i+1 is the mean arrival rate.

D is the random variable representing the delay experienced by cells arriving at the

input of the queueing system.

�i, is the probability that the system is occupied i.e., the utilization givenS = xi

3.2 Analysis of Cell Loss

In this section analytical expression for the estimating the cell loss ratio is reviewed.

This analysis is based on [3]. Unlike the case for estimating the mean cell delays, the

expressions for the calculation of cell loss in a deterministic server queueing system

are considerably more complex. The cell loss ratio in a finite buffer queueing sys-

tem is approximated by the tail of the queue length distribution of the infinite buffer

counterpart. Here we assume that the number of arrivals to the queueing system in
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a slot follows a Poisson process. That is, for estimating cell loss we assume that the

micro-dynamics are Markovian. This theoretically limits loss prediction methodology

to Poisson micro-dynamics. The practical implications of this assumption will be ad-

dressed emperically in Chapter 6. That is, for estimating cell loss we assume that the

micro-dynamics are Markovian. Exact expressions for cell loss in terms of the ergodic

occupancy distribution of an M/ D/ 1 system are now presented. The cell loss estimate

for the arrival process is then obtained as sum of loss estimates obtained from individual

states weighted by the probability of being in that state.

The expressions for the M/ D/ 1 queue are obtained as a special case of the M/

G/ 1 analysis by using a recursive numerical technique due to Kielson and Servi and

given in [3]. Consistent with the notation used in the previous section, letP i
k denote

the probability that there arek cells in the queue given that the input process is in state

xi i.e.,P i
k = P [Q = kjS = xi]. Here the cell loss probability estimate given that the

input process is in statexi, is approximated as the probabilityP [Q > KjS = xi] �

PL[KjS = xi], for a given system size of ’K’. Let the utilization of the system given that

the input process is in statexi, be�i. The utilization of a queueing system is defined as

the ratio of the mean arrival rate to the queueing system to the service rate. For stability

we require0 � �i < 18i . Note thatP i
0 = 1 � �i given in the previous section.P i

k,

PL[KjS = xi] are given below as :

P i
k =

(1� �i)p
i
k +
Pk

n=1 f1�
Pn

m=0 p
i
mgP

i
k�n

pi0
k = 1; 2; 3; :::K (3.13)

PL[kjS = xi] � P [Q > KjS = xi] = 1�
KX
k=0

P
j
k (3.14)
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In general the probabilitiespj;n are state dependent and can be obtained from the

relation :

F xi

�(�i[1� z]) =
1X
j=0

zjpin (3.15)

where

In Equation (3.15),F xi

�(z) denotes the Laplace-Stieltjes transform of the random

variablexi. The Laplace-Stieltjes transform can be defined below:

Definition 1 Let X be a non-negative random variable with distributionFX(x).

Then

FX
�(s) =

Z
1

0
e�sxdFX(x)

is called the Laplace-Stieltjes transform of the random variableX.

For the case of a deterministic service Equation (3.15) evaluates to

e��i[1�z] =
1X
j=0

zjpin (3.16)

Upon matching the coefficients ofzj in Equation (3.16),pin evaluates to

pin =
e��i�i

n

n!
(3.17)

The final result for obtaining the cell loss probability estimate can be stated as
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PL(K) =

NX
i=1

�i(1�
KX
j=0

P i
j ) (3.18)

=

NX
i=1

�i(1�
KX
k=0

(1� �i)p
i
k +
Pi

n=1 f1�
Pn

m=0 p
i
mgP

i
k�n

pi0
) (3.19)

It is should be noted that, using the performance analysis technique described above

produces a non-linear relation between cell loss as the function of the buffer size, which

is typical in the case of long range dependent traffic. Similarly, this analysis produces

delay curves typical characteristics of delay curves that can be expected from long range

dependent network traffic.
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Chapter 4

Data Collection and the AAI

4.1 Configuration of the AAI Network

The performance analysis in this research is based on the trace data collected from the

ACTS ATM Internetwork (AAI) network [21]. This chapter describes the method used

for collecting the traces, the configuration of the AAI wide area ATM network and in-

formation on the data collection process. As a part of this research the AAI network

was extensively monitored by the University of Kansas. Data totaling to about 1.8

Gbytes has been collected from the AAI network in the interval starting from January

’96 to July ’97. A number of ports on the ATM switches at various locations in the AAI

network were continuously monitored. Data from the selected ports on the switches

was collected using periodic Simple Network Management Protocol (SNMP) requests.

SNMP is a standard protocol used to monitor switches and the networks to which they

attach [35]. The data traces consist of switch buffer cell counts collected with a sam-

pling period of approximately 60 seconds. The collected data traces are resampled so

that the granularity between successive cell counts is exactly equal to 60 seconds. The

tools and methods used for collecting the measurements and obtaining the plots are

29



Table 4.1: Site involved in the collection process
Site Location

Naval Research Lab (NRL) Washington, D.C.
Army Research Lab (ARL) APG, Maryland

Naval Command Control and
Ocean Surveillance Center (NCCOSC) San Diego, California

Corps Of Engineers Waterways
Experiments Station (CEWES) Vicksburg, Mississippi

Naval Research Lab,
Stennis Space Center (NRLSSC) Stennis Space Center, Mississippi

Government Systems Division (GSD) Kansas City, Missouri
EROS data center (EDC) Sioux Falls, South Dakota

Sprint Technology Integration
And Operations Center ( TIOC ) Overland Park, Kansas

University of Kansas (KU) Lawrence, Kansas

discussed in this chapter.

Starting from January 96 specific AAI edge switches and MAGIC switches were

monitored continuously. The sites involved in the AAI network are given in Table 4.1.

The VPI assignments between the sites are fixed. The configuration of the AAI network

is shown in Figure 4.1.

At each of the above mentioned sites at least one port on the selected switch was

being sampled. All the data was collected from the edge switches which are FORE

switches. Switches inside the AAI cloud are not monitored as a part of this study.

4.2 Data Collection

In this section the methods and tools which have been used for obtaining the mea-

surements are discussed. Data was collected in the form of switch buffer cell counts,

using SNMP. The method adopted relies on querying the SNMP agent that is main-
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Figure 4.1: Connections of the sites and switches being sampled.
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Figure 4.2: SNMP requests and responses.

tained on the FORE switches in the network. The SNMP agents are maintained by the

SNMP daemon running on each switch. Agents support a Management Information

Base (MIB) containing information about the operation of each switch. Among other

things the MIB supports counters for the number of cells transferring over a port, a par-

ticular virtual path, or a particular virtual channel. Traffic flowing out of a port cannot

be monitored on a virtual channel basis as the FORE MIB does not support the MIB

element. The information as needed can be obtained by querying the appropriate MIB

variable. SNMP requests are sent to each AAI switch approximately every 60 seconds

from a KU SPARCcenter 2000 computer namedarmstrong:ittc:ukans:edu. The re-

quested cell count is returned as response to the request. The cell count is time-stamped

when it is successfully received.

The Tricklet library [36] has been used for making the SNMP requests. The Trick-

let library offers a convenient interface for obtaining network management informa-

tion using SNMP. In particular the SNMP-GET, SNMP-GET NEXT, SNMP-TBL and

SNMP-SET requests are implemented in the Tricklet library. The SNMP-GET requests

the value of the specified MIB variable. SNMP-GET NEXT retrieves the next MIB

variable in the hierarchy to the specified variable. SNMP-TBL is implemented as a

series of GET and GET NEXT requests. It returns a group of MIB variables which
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form a subtree with the requested variable as the root. The cell counts obtained from

the responses to the SNMP requests and their corresponding time-stamps are contin-

uously archived. Successive time-stamps in the archived data differ by approximately

60 seconds, as the SNMP requests are sent out at approximately 60 second intervals

with a variation of a few seconds. The data collected is resampled so that the time be-

tween successive cell counts is equal to 60 seconds. The re-sampling is done through

linear interpolation of raw cell counts. The process of interpolation is shown in Figure

4.3. The linear interpolation technique used for resampling the raw cell counts can be

expressed as Equation 4.1. In Equation 4.1, for any given value ofk, t1 represents the

largest time in the trace that is less thank�t andt2 represents the smallest time in the

trace that is greater thatk�t.

c(k�t) = c(t1) +
c(t2)� c(t1)

t2 � t1
� (k�t� t1); k = 1; 2; 3; ::: (4.1)

where

c(k�t) is the cell count obtained by interpolation.

�t is the time interval after resampling and is 60 seconds.

c(t2) andc(t1) are cell counts from collected data which are sampled at approxi-

mately 60 seconds.

From the resampled data the throughput for each sampling period is calculated as

the time average of the number of cells transferred during this period. The length of

the sampling period is equal to 60 seconds. The random processR(t), representing the

rate process can be expressed as:
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Figure 4.3: Re-sampling by linear interpolation of cell counts.

R(t) =
[A(t +�t)� A(t)] � 424

�t
b=s; (4.2)

where,

A(t) is the cell count at timet.

R(t) is the throughput at timet.

In the above equation�t is 60 seconds as the actual values of�t are obtained from

the resampled cell counts. As explained in Chapter 3, the model developed is based on

uniformly quantizing the range of the random processR(t) into ’N’ levels. Note that

the range of the random process,R(t) is the range of rates present in the given trace file

and is thus bounded by
min and
max.

In order to observe events at various parts of the network, a tool was developed to

summarize each day’s of data collected in the form of thumb-nail gifs plotted on a per

site basis, for every port being monitored. Information related to the status of the ARP

server for AAI and the connectivity status of the various AAI hosts is also monitored.
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The tool developed can be used for viewing and analyzing the traffic profiles generated

by experiments being done on the network.

4.3 Observations

As a part of the AAI project, traffic flows at various locations in the AAI network were

extensively monitored. In this section some initial observations about the flow patterns

observed in the AAI network are presented. Observations from the traffic flows are

important as they indicate the types of traffic that are prominent in a network focus the

problem of modeling to include these traffic types. As expected of traffic in a broad-

band network, the AAI traffic flow patterns show significant burstiness. Apart from this,

EMMI traffic for a significant amount of time has been observed in the traffic flows in

the network. EMMI is the Efficient Multi Media Interface for transporting video, voice

and data over ATM networks. The EMMI device is attached externally to a worksta-

tion which hosts the driver and application software. The hardware of the device is

workstation-independent. The EMMI device provides user-selectable quantization fac-

tors for compressing video data. The value of the quantization factor effects the quality

of the video image that is transmitted and determines the bandwidth required for the

image transmission. The bandwidth for EMMI traffic varies from 1.85 Mb/s - 85 Mb/s

depending on the appliation.

Apart from EMMI traffic, observations from the traffic profiles indicate the pres-

ence of a significant amount of background traffic. Typically the background flows

have been observed to have a peak magnitude of 1-2 Mb/s. There are many existing

techniques in literature to model specific kinds of application traffic. However, there

are no models for modeling background traffic. Therefore this study also aims at mod-

eling the background traffic and study its queueing performance. One of the factors
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contributing to the significant amount of background traffic is the complexity involved

in the operation of an ATM WAN. The routing protocols in ATM for example, can

be expected to generate some amount of background traffic as the switches exchange

routing tables and other update messages periodically.
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Chapter 5

Simulation Model

5.1 Simulation Model Description

In this chapter the simulation model that was developed is described and validated.

The simulator is used for obtaining estimates of the mean cell transfer delay and the

cell loss ratio of the queueing system. The basic queueing model that is simulated

is an infinite buffer queue with a deterministic server. The model is implemented by

keeping track of the number of cells in the queue at all times. By knowing the capacity

of the server, along with the number of cells in the system, the delay incurred in the

queue for an arriving cell can be estimated. In addition an estimate for the cell loss

probability for a fixed buffer size is obtained by approximating it with the tail of the

queue length distribution. Given a buffer size ’N ’, the cells loss probability is estimated

as the probabilityP (Q > N). As mentioned in Section 1.1, the value thus obtained is a

conservative estimate for the cell loss ratio. The assumption of a deterministic server is

consistent with fixed cell size in ATM networks. In the simulation model the slot size

is fixed as the reciprocal of the server capacity expressed incells=sec. Therefore at the

end of each slot a single cell is served if the queue is non-empty. Within each slot cells
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arrive to the queueing system with inter-arrival times that follow a known statistical

distribution having a finite mean and variance. In the case of trace driven simulations

the number of cells that arrive to the queueing system are obtained from a collected

data trace.

Since the queue has a deterministic server, the dynamics of the queueing system

defined by the the number of cells in the queue at any instant of time can given by :

n(k + 1) = max(0; n(k) + a(k)� 1): (5.1)

where

n(k) is the number of cells in the system at the end of thekth and

a(k) is the number of cells that arrived during thekth slot.

max(a; b) represents the minimum of the quantities a and b.

The different quantities in Equation (5.1) which are used for obtaining cell delay

estimates from cell counts are shown in Figure 5.1. In the simulations the number of

cells in the queue is sampled at the end of every time slot.

Within each sampling interval ofTs seconds the arrival process is assumed to follow

a point process. The number of arrivals with in a cell slot, given byn(k), is obtained

from the assumed point process for the cell arrivals. The specific point process chosen

in the simulation model, simulates the traffic microdynamics component ofR(t) as

described in the traffic model.

The deterministic rate of the server is varied in order to get the delay values for dif-

ferent values of load on the link. After the number of cells in the queue is determined

using Equation (5.1) the cell delay is obtained as:

38



n(k-1)

TIME

Number of Cells

k k+1k-1

n(k)

n(k+1)

Figure 5.1: Delay estimation from cell counts

�̂(k) =
n(k)

�
(5.2)

where

� is the rate of the deterministic rate of the server in cells/sec.

�̂ (k) is the delay estimate for the cell at the end of thekth slot.

As can be seen from Equation (5.2), the delay estimate�̂(k) is a function of slot

number. Therefore the average cell delay is for the whole trace is calculated using the

relation:

�� =
1

M

MX
k=1

^�(k) (5.3)
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Figure 5.2: Validation of Model

where

�� is mean cell delay over the whole trace and

M is the total number of slots for the given trace.

The cell loss probability for a buffer sizex denoted asPL(x), is obtained by count-

ing the relative number of times, the queue lengthn(k) exceeds the valuex.

PL(x) = P [n(k) > x] (5.4)

5.2 Validation of Model

The simulation model is validated by performing simulations with standard sources

described in terms of known parameters and comparing the simulation results with

those predicted by standard theoretical results.

For validating the simulation model a source which generates cells with exponen-

tially distributed inter-arrival times with a known average rate has been constructed.

A data trace is obtained by sampling the output of the known source at constant time

intervals ofTS seconds. Exponential inter-arrival times for the cells in the constructed

source are generated based on the Transform Method described in [16]. The Transform
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Figure 5.3: Generated trace with exponentially distributed inter-arrival times.

Method is based on the principle that a random variable with any arbitrary probabil-

ity density function (pdf) can be generated, by applying a simple transformation to a

Uniform Random variable. The Transform Method utilizes the fact that the Cumulative

Distribution Function of an arbitrary random variable has a Uniform Distribution in the

interval [0,1]. Refer [16] for the detailed derivation.

The synthesized trace is used in the algorithm for the cell-level simulation described

in Section 5.1. The process of obtaining the trace which is used for validation of the

simulation model is shown in Figure 5.2. The method of obtaining the synthesized trace

by sampling the output of the source atTS seconds is analogous to the method by which

traces are collected from the network by sending periodic SNMP requests. Figure 5.3

shows the synthesized trace obtained by sampling the source atTS = 60 seconds. The

trace consists of inter-arrival times that are exponentially distributed with a mean of 1

ms.

The values of the estimates of the mean-cell delay and cell loss ratio obtained from

the simulation results are compared to the theoretical values. The theoretical values of
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the mean queueing delay are obtained from the well known Pollaczek-Kinchin relation

and Little’s result [3] as applied to an M/D/1 system which is given as

D = (
1

�
)[�+

�2

2(1� �)
] (5.5)

where

� is the average arrival rate to the queue and

� is the input load to the system.

D is the mean cell delay.

The validation results for the mean cell delays are plotted in Figure 5.4. From Figure

5.4 we see that the results obtained from the simulator match the theoretical values very

well even at high values of load. Considering thestatistical natureof the simulation,

the comparison shows that the developed simulator and the simulation model work

correctly.

The simulator is now validated in terms of the cell loss ratio estimate which is ap-

proximated by the tail of the queue length distribution. Unlike the case for estimating

the mean cell delays, the expressions for the calculation of cell loss in a determinis-

tic server queueing system are considerably more complex. For this reason, the loss

calculations for an M/ D/ 1 system are often approximated with those of an M/ M/ 1

queueing system, which requires less numerical calculation. Exact expressions for cell

loss in terms of the ergodic occupancy distribution of an M/ D/ 1 system are presented

as a special case of an M/ G/ 1 system as explained in Chapter 3.

Based on the M/ D/ 1/ K model, the theoretical values of the logarithm ofP [Q > x]

is plotted against the buffer size in Figure 5.5. In the same figure simulation results

obtained from the sampled simulated trace are also shown. The analytical equations
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Figure 5.4: Validation of the simulator for mean cell transfer delay results.
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Figure 5.5: Validation of the simulator for Cell loss ratio results.

used for obtaining the theoretical values are given in Section 3.2. From Figure 5.5 it

can be seen that the estimates of cell loss ratio obtained from trace based simulation

results matches the theoretical values up to a value of10�6. Note that cell loss ratios

less than10�6 cannot be estimated accurately as the variance of the estimator is high in

the loss ranges greater than10�6 because of the limited number of cells in the trace.
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Chapter 6

Experimental Validation of the

proposed Analysis Performance

Methodology

6.1 Traffic Traces Used in Model Evaluation

In this chapter the model and the performance evaluation technique described in Chap-

ters 2 and 3 respectively are evaluated experimentally. The evaluation is done by com-

paring the performance predicted by the model, with the corresponding performance

obtained from simulation based on collected network traces. Several network traces

collected from the AAI network are employed here. The traces are collected based on

the method described in Chapter 4. The traces used for the experimental evaluation in

this chapter are listed below in Table 6.1.

The traces listed in Table 6.1 were collected with a sampling interval of approx-

imately 60 secs and were resampled so that the sampling interval is exactly equal to
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Table 6.1: Data traces used for model validation
Trace Name Duration (Hours) # cells Characteristic

TIOC 48 2.4896e08 Background
NCCOSC 25 3.02697e08 Background

NRL1 6 5.1054e08 EMMI
Phillips 15 2.227e09 SC ’95
GSD 6 2.23624e08 SC ’95
KU 3 9.23146e08 EMMI

NRL2 12 1.8645e08 EMMI

60secs. The traces are chosen such that traffic with different rate levels ranging from

low (approximately 1 Mb/s peak rates) to high (Approximately 70 Mb/s peak rates)

is taken into consideration for experimental evaluation of the model. The traces also

represent traffic with different traffic types. The traffic type represents the main char-

acteristic of the flow in the trace. The specific traffic flow types used here are :

1. Background: Significant complexity is involved in the operation of a national

scale ATM network. Background traffic represents management flows, rout-

ing message updates etc., can be expected to be generated in operational ATM

WANS. The traces labeled ’TIOC’ and ’NCCOSC’ shown in Figures 6.1 and 6.4

respectively represents typical background traffic flow.

2. EMMI: The EMMI traffic flows are the multimedia traffic profiles obtained from

the EMMI system described in Chapter 4. Multimedia application profiles in

future networks will be similar to the EMMI flows used here. The traces labeled

’NRL1’, ’KU’ and ’NRL2’, shown in Figures 6.7, 6.16 and 6.19 respectively are

the EMMI flows. As mentioned above, the traffic type of the trace represents the

main characteristic of the traffic in the trace. However as aggregate traffic from

a port is being modeled, note that other types of traffic can also present along

with the main characteristic flow. For example, along with the EMMI traffic the
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’NRL1’ and ’KU’ traces contain bursts of short duration, that are typically FTP

flows from the collected port.

3. SC ’95 flows: The SC ’95 flows are the traffic flows collected by KU during Su-

percomputer’95 (SC’95) in December 1995. The SC ’95 flows represent bursty

application traffic profiles typical in wide area ATM networks. The traces labeled

’Phillips’ and ’GSD’, shown in Figures 6.10 and 6.13 respectively are the SC ’95

flows. Note that in December 1995 the access link to the Phillips Labs was a

DS-3 link. The Phillips data trace was collected with a sampling interval of ap-

proximately 10 secs and was resampled so that the sampling period is exactly 60

seconds which is same as the sampling interval in other traces used here.

For each of the traces shown in Table 6.1 performance is evaluated in terms of mean

cell transfer delay and the probability of cell loss through a switch output queue. The

results for the mean delay are given here as delay vs load curves while the cell loss

probability estimates are given as the logarithm (to base 10) of the probability of the

queue length exceeding a given finite buffer size plotted against the buffer size in cells.

For each of the traces in Table 6.1, the performance results (mean delay and proba-

bility of cell loss) are obtained from:

1. The model, with the CDF of the input process obtained from a theoretical infinite

variance distribution. A Pareto distribution with the shape parameter estimated

from the traffic flow is used here.

2. The model, with the CDF of the input process obtained from the histogram of the

collected network trace data.

3. Direct simulation based on the collected network trace data.
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In the figures showing the results of the experimental evaluation, the performance

prediction values obtained from (1) are labeled as ’Model’ and the corresponding re-

sults obtained from (2) and (3) are labeled as ’Histogram’ and ’Simulation’ respectively.

6.2 Results

In this section the results of experimental evaluation are discussed. Note that in or-

der to demonstrate the usefulness of the non-Markovian model and the performance

evaluation technique developed in this study, traces with varying amount of burstiness,

for different periods of time were considered in this study. The traffic profiles that are

considered in this chapter for experimental evaluation of the model can be typically

expected in typical wide area ATM networks.

The results for average cell delay are shown in Figures 6.2, 6.5, 6.8, 6.14, 6.11,

6.17, 6.20. The load was varied by changing the cell service time in the simulation

model. Observe that mean delay values of up to .5 seconds have been shown in the

delay curves, to demonstrate that for high delay values, the analytical and simulation

results match reasonably, considering the statistical nature of the simulation. The knee

of the delay curve is important from a traffic engineering view point. The knee of the

delay curve is the region of the delay profile where the delay values start increasing

sharply with an increase in the load. The knee of the delay curve therefore represents a

trade off between delay and load. In the next section, the knee of the delay profiles are

discussed. Also note from Figures 6.2, 6.5, 6.8, 6.14, 6.11, 6.17, 6.20 that unlike the

case of a short range dependent model, the model and the perform analysis method that

are developed here, captures the burstiness in the input trace and predict delay profiles

that are similar to those obtained from real network trace data obtained from a high

speed wide area ATM network.
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The results for the cell loss probability estimates are shown in Figures 6.3, 6.6, 6.9,

6.12, 6.15, 6.18, 6.21. Each of the figures shows the cell loss profiles from the model

and simulation based on collected traces. From Figures 6.3, 6.6, 6.9, 6.12, 6.15, 6.18,

6.21 it can be seen that the cell loss probability estimates of unto10�6 are accurately

modeled. Also from the Figures 6.3, 6.6, 6.9, 6.12, 6.15, 6.18, 6.21 note that the model

captures the non-linear dependence between logarithm of cell loss and buffer size. Cell

loss probabilities less that10�6 cannot be accurately obtained because of the limited

number of cells in the trace, because of which the variance of the estimator increases.

Note that since the simulations performed are at the cell level, it takes very long time

to obtain cell loss probability estimates less that10�6.

All the figures in this section were obtained by assuming that the traffic micro-

dynamics in a state follow an exponential distribution. In the next section the effects of

traffic micro-dynamics on the mean cell delay and cell loss ratio estimate are investi-

gated. In the next section the effect of load on the cell loss in a queueing system is also

investigated.
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Figure 6.1: Data trace Collected from the TIOC site.
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Figure 6.2: Comparison of Mean Cell Delay estimates obtained from theory (� =

5:6), histogram and simulation of the collected data trace labeled ’TIOC’ and shown in
Figure 6.1 usingN = 15 input phases.
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Figure 6.3: Comparison of cell loss probability estimates obtained from theory (� =

5:6), histogram and simulation of the collected data trace labeled ’TIOC’ shown and in
Figure 6.1 usingN = 15 input phases.� = :4.
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Figure 6.4: Data trace Collected from the NCCOSC site.
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Figure 6.5: Comparison of Mean Cell Delay estimates obtained from theory (� = 8:2),
histogram and simulation of the collected data trace labeled ’NCCOSC’ and shown in
Figure 6.4 usingN = 15 input phases.
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Figure 6.6: Comparison of cell loss probability estimates obtained from theory (� =

8:2), histogram and simulation of the collected data trace labeled ’NCCOSC’ shown in
Figure 6.4 usingN = 15 input phases.� = :4.
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Figure 6.7: Data trace Collected from the NRL site.
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Figure 6.8: Comparison of Mean Cell Delay estimates obtained from theory (� =

2:2), histogram and simulation of the collected data trace labeled ’NRL1’ and shown in
Figure 6.7 usingN = 15 input phases.
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Figure 6.9: Comparison of cell loss probability estimates obtained from theory (� =

2:2), histogram and simulation of the collected data trace labeled ’NRL1’ and shown in
Figure 6.7 usingN = 15 input phases.� = :4.
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Figure 6.10: Data trace Collected from the Phillips site.
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Figure 6.11: Comparison of Mean Cell Delay estimates obtained from theory (� =

1:2), histogram and simulation of the collected data trace labeled ’Phillips’ and shown
in Figure 6.10 usingN = 15 input phases.
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Figure 6.12: Comparison of cell loss probability estimates obtained from theory (� =

1:2), histogram and simulation of the collected data trace ’Phillips’ and shown in Figure
6.10 usingN = 15 input phases.� = :4.
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Figure 6.13: Data trace collected from the GSD site.
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Figure 6.14: Comparison of Mean Cell Delay estimates obtained from theory (� =

1:4), histogram and simulation of the collected data trace labeled ’GSD’ and shown in
Figure 6.13 usingN = 15 input phases.
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Figure 6.15: Comparison of Cell loss probability estimates obtained from theory (� =

1:4), histogram and simulation of the collected data trace labeled ’GSD’ and shown in
Figure 6.13 usingN = 15 input phases.� = :4.
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Figure 6.16: Data trace collected from the KU site.
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Figure 6.17: Comparison of Mean Cell Delay estimates obtained from theory (� =

2:1), histogram and simulation of the collected data trace labeled ’KU’ and shown in
Figure 6.16 usingN = 15 input phases.
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Figure 6.18: Comparison of Cell loss probability estimates obtained from theory (� =

2:1), histogram and simulation of the collected data trace labeled ’KU’ and shown in
Figure 6.16 usingN = 15 input phases.� = :45

6.3 Traffic Microdynamics

In this section the effect of traffic micro-dynamics on the queuing performance is in-

vestigated. The effect of traffic micro-dynamics on queue dynamics has been a point

of contention of many traffic studies. In traffic studies like [8], it has been pointed out

that long-range dependence is the dominant traffic characteristic that determines the

queuing performance. However in [20], it has been argued that traffic dynamics at the

micro level do influence the queuing performance.

It should be recalled that in the context of the model developed, the traffic charac-

teristics within a given phase of the input process are defined as the traffic micro-scale

dynamics. The micro-scale dynamics define the cell inter-arrival times within a par-

ticular phase. In order to study the effect of micro-dynamics, different distributions of
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Figure 6.19: Data trace collected from the NRL site.
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Figure 6.20: Comparison of Mean Cell Delay estimates obtained from theory (� =

3:4),histogram and simulation of the collected data trace labeled ’NRL2’ and shown in
Figure 6.19 usingN = 15 input phases.
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Figure 6.21: Comparison of Cell loss probability estimates obtained from theory (� =

3:4), histogram and simulation of the collected data trace labeled ’NRL2’ and shown in
Figure 6.19 usingN = 15 input phases.� = :45.
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micro-dynamics are employed and the queueing performance is studied both in terms

of the mean cell delay and cell loss ratio. In particular, exponential and uniform dis-

tributions are considered here for defining the micro-scale dynamics with in a given

phase. Figures 6.22, 6.26, 6.29, 6.32, 6.35, 6.38, 6.41 show the delay profiles pre-

dicted by the model by employing exponential and uniform distributions for the traffic

microscale-dynamics. The results are presented at a finer time scale compared to the

previous results to focus on the performance near the ”knee” of the delay vs load curve.

These results demonstrate that the delay curves predicted by the model using different

micro-dynamics are similar. Also it can be seen that the effect of micro-dynamics on

the average cell transfer delay at a queueing system is not significant, in the presence

of long-range dependence. Note that the model can be used to effectively analyze the

different micro-dynamics because of the G/ D/ 1 analytical technique used for comput-

ing the mean queue lengths during each of the sojourn periods of the phase process.

The simulation model described in Chapter 5 is now used to verify the effect of micro-

dynamics on delay that was predicted by the model. Figures 6.23, 6.27, 6.30, 6.33,

6.36, 6.39 , 6.42 the delay curves obtained from simulations based on the collected

traces listed in Table 6.1. The delay curves obtained from the simulations are similar to

those predicted by the model and help establish the relative insensitivity of average cell

delay to micro-dynamics in the presence of long-range dependence.

Apart from demonstrating the effect of traffic micro-dynamics using analysis, a

qualitative explanation to the effect in terms of the power spectrum of the rate process

can also be provided. It has been shown that traffic micro-dynamics contribute a white

noise term to the power spectrum of the rate process. The amount of white noise con-

tributed depend on the amount of randomness associated with the micro-dynamics. In
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the power spectrum, long-range dependence manifests itself as a divergent spectrum:

lim
!!1

P (!) � 1

As the low frequency domain characteristics determines the queuing performance, long-

range dependence predominately dominates the queuing response. However, in the ab-

sence of long-range dependence the white-noise contribution of traffic micro dynamics

to the low-frequency spectrum cannot be ignored.

The equations for estimating the cell loss probability in a queueing system having

a general phase dependent process as the input are complex and analytically difficult

to obtain. The influence of micro-dynamics on cell loss are investigated through ex-

tensive trace driven simulations based on the traces listed in Table 6.1. As employed

in the case of delay results, exponential and uniform distributions are considered for

the micro-dynamics. Figure 6.24 shows the cell loss curves at loads of .4 and .6, using

both exponential and uniform micro-dynamics. The Figure 6.24 indicates that effect

of micro-dynamics on cell loss depends on the load of the queueing system. Simi-

lar results were obtained from simulations based on other collected traces. Therefore,

Figures 6.25, 6.28, 6.31, 6.37, 6.34, 6.40, 6.43 show the results of the simulations for

estimating cell loss probability as the load and the micro-dynamics change. Each of the

plots shows the cell loss probability estimate obtained at a given load, using exponential

and uniform microscale dynamics. The simulation results indicate that unlike the case

of average delay, the cell loss probability values are sensitive to the micro-dynamics, at

low loads. As the load increases, the influence of micro-dynamics on cell loss probabil-

ity reduces. At high loads the cell loss in the queue is mainly determined by the bursts

in the arrival process, which is modeled by the macro-dynamic structure of the input

process, where as at low loads, the dynamics of cell arrivals represented by the micro-
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Figure 6.22: Effect of traffic micro-dynamics on Mean Delay predicted by theory (� =

5:6), for the trace labeled ’TIOC’ and shown in Figure 6.1 usingN = 15 input phases.

dynamics of the input process dominate the cell loss in the queueing system. Also the

loss estimates obtained with exponential micro-dynamics is always greater than the loss

probability obtained assuming uniformly distributed microscale dynamics. Figure 6.44

shows the relation between logarithm of the cell loss probability plotted against the load

for a trace with exponentially distributed cell inter-arrivals. The generated trace with

exponential cell inter-arrival times is the trace used for validating the simulation model

was used for obtaining the curve in Figure 6.44. One interesting observation form Fig-

ure 6.44 is that unlike the corresponding non linear curves shown in Figures 6.25, 6.28,

6.31, 6.37, 6.43 for traffic with long-range dependence, the plot of logarithm of cell

loss vs load is linear as expected.
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Figure 6.23: Effect of traffic micro-dynamics on Mean Delay obtained from simulation
of the trace labeled ’TIOC’ and shown in Figure 6.1.
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Figure 6.24: Effect of traffic micro-dynamics on Cell loss probability at different values
of load, obtained from simulation of the trace labeled ’TIOC’ and shown in Figure 6.1
usingN = 15 input phases.
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Figure 6.25: Effect of traffic micro-dynamics on Cell loss probability obtained for a
fixed buffer size of 20 cells from simulation of the trace data trace labeled ’TIOC’ and
shown in Figure 6.1.
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Figure 6.26: Effect of traffic micro-dynamics on Mean Delay predicted by theory (� =

8:2), for the data trace labeled ’NCCOSC’ and shown in Figure 6.4 usingN = 15 input
phases.
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Figure 6.27: Effect of traffic micro-dynamics on Mean Delay obtained from simulation
of the data trace labeled ’NCCOSC’ and shown Figure 6.4.
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Figure 6.28: Effect of traffic micro-dynamics on Cell loss probability estimate obtained
for a fixed buffer size of 25 cells from simulation of on the trace labeled ’NCCOSC’
and shown in Figure 6.4s.
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Figure 6.29: Effect of traffic micro-dynamics on Mean Delay predicted by theory (� =

2:2), for the trace labeled ’NRL1’ and shown in Figure 6.7 usingN = 15 input phases.
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Figure 6.30: Effect of traffic micro-dynamics on Mean Delay obtained from simulation
of the trace labeled ’NRL1’ and shown in Figure 6.7.
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Figure 6.31: Effect of traffic micro-dynamics on Cell loss probability estimate obtained
for a buffer size of 25 cells from simulation of the trace labeled ’NRL1’ and shown in
Figure 6.7.
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Figure 6.32: Effect of traffic micro-dynamics on Mean Delay predicted by theory (� =

1:2), for the trace labeled ’Phillips’ and shown in Figure 6.10 usingN = 15 input
phases.
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Figure 6.33: Effect of traffic micro-dynamics on Mean Delay obtained from simulation
of the trace labeled ’Phillips’ and shown in Figure 6.10.
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Figure 6.34: Effect of traffic micro-dynamics on Cell loss probability estimate obtained
for a buffer size of 30 cells from simulation of the trace labeled ’Phillips’ and shown in
Figure 6.10.
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Figure 6.35: Effect of traffic micro-dynamics on Mean Delay predicted by theory (� =

1:4), for the trace labeled ’GSD’ and shown in Figure 6.13 usingN = 15 input phases.
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Figure 6.36: Effect of traffic micro-dynamics on Mean Delay obtained from simulation
of the trace labeled ’GSD’ and shown in Figure 6.13.
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Figure 6.37: Effect of traffic micro-dynamics on Cell loss probability estimate obtained
for a buffer size of 25 cells from simulation of the trace labeled ’GSD’ and shown in
Figure 6.13.

74



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

Load

M
ea

n 
C

el
l D

el
ay

 (
S

ec
s)

Exponentisl
Uniform    

Figure 6.38: Effect of traffic micro-dynamics on Mean Delay predicted by theory (� =

2:1), for the trace labeled ’KU’ and shown in Figure 6.16 usingN = 15 input phases.
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Figure 6.39: Effect of traffic micro-dynamics on Mean Delay obtained from simulation
of the trace labeled ’KU’ and shown in Figure 6.16.
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Figure 6.40: Effect of traffic micro-dynamics on Cell loss probability estimate obtained
for a buffer size of 20 cells from simulation of the trace labeled ’KU’ and shown in
Figure 6.16.

6.4 Sensitivity of the Model to number of phases

As mentioned, the results in the Section 4.2 were obtained using exponential micro-

dynamics andN = 15. In Section 4.3 the effects of micro-dynamics were studied. In

this section the dependence of mean delay and cell loss results on the number of phases,

N , is considered. Performance results are estimated forN = 10; 15; 25 and35 phases.

The results for cell delay sensitivity are shown in Figures 6.45, 6.47, 6.49, 6.51, 6.53,

6.55 and 6.57. The corresponding cell loss results are shown in Figures 6.46, 6.48,

6.50, 6.52, 6.54, 6.56 and 6.58. From the results it can be seen that the performance

prediction results are not sensitive to high values ofN . The results in these figures

show that using fifteen phases in the arrival process is sufficient to produce accurate

results.
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Figure 6.41: Effect of traffic micro-dynamics on Mean Delay predicted by theory (� =

3:4), for the trace labeled ’NRL2’ and shown in Figure 6.19 usingN = 15 input phases.
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Figure 6.42: Effect of traffic micro-dynamics on Mean Delay obtained from simulation
of the trace labeled ’NRL2’ and shown in Figure 6.19.
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Figure 6.43: Effect of traffic micro-dynamics on Cell loss probability estimate obtained
for a buffer size of 30 cells from simulation of the trace labeled ’NRL2’ and shown in
Figure 6.19.
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Figure 6.44: Plot of cell loss vs load for a trace with exponential inter-arrival times.
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Figure 6.45: Sensitivity of mean cell delay to the number of phases for the trace labeled
’TIOC’ and shown in Figure 6.1 usingN = 15 input phases.
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Figure 6.46: Sensitivity of cell loss probability to the number of phases for the trace
labeled ’TIOC’ and shown in Figure 6.1 usingN = 15 input phases.� = :4.
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Figure 6.47: Sensitivity of mean cell delay to the number of phases for the trace labeled
’NCCOSC’ and shown in Figure 6.4 usingN = 15 input phases.
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Figure 6.48: Sensitivity of cell loss probability to the number of phases for the trace
labeled ’NCCOSC’ and shown in Figure 6.4 usingN = 15 input phases.� = :6:
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Figure 6.49: Sensitivity of mean cell delay to the number of phases for the trace labeled
’NRL1’ and shown in Figure 6.7 usingN = 15 input phases.
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Figure 6.50: Sensitivity of cell loss probability to the number of phases for the trace
labeled ’NRL1’ and shown in Figure 6.7 usingN = 15 input phases.� = :45.
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Figure 6.51: Sensitivity of mean cell delay to the number of phases for the trace labeled
’Phillips’ and shown in Figure 6.10 usingN = 15 input phases.
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Figure 6.52: Sensitivity of cell loss probability to the number of phases for the trace
labeled ’Phillips’ and shown in Figure 6.10 usingN = 15 input phases.� = :4.
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Figure 6.53: Sensitivity of mean cell delay to the number of phases for the trace labeled
’GSD’ and shown in Figure 6.13 usingN = 15 input phases.

6.5 Second-order statistics

In this section accuracy of the model in terms of the second-order statistics of the

rate process is demonstrated. In time domain, the second-order statistics of the rate

processR(t), are represented by its auto-correlation function. The auto correlation

function obtained from collected trace data is compared with that obtained from a

Pareto/Exponential model. The sojourn times in each of the phases is assumed to be

proportional to the steady state probability of being in that phase i.e., the input pro-

cess is assumed to be in phasexi for duration proportional to�i. In particular for a

sampling interval ofTs seconds, the sojourn time in phasexi is equal to the product

of Ts and�. Figures 6.59, 6.60, 6.61, 6.63, 6.64, 6.65 show the autocorrelation func-

tion obtained from trace data and that obtained using the model. From these figures

we see that autocorrelation functions of the model and real network data match rea-
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Figure 6.54: Sensitivity of cell loss probability to the number of phases for the trace
labeled ’GSD’ and shown in Figure 6.13 usingN = 15 input phases.� = :4.
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Figure 6.55: Sensitivity of mean cell delay to the number of phases for the trace labeled
’KU’ and shown in Figure 6.16 usingN = 15 input phases.
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Figure 6.56: Sensitivity of cell loss probability to the number of phases for the trace
labeled ’KU’ and shown in Figure 6.16 usingN = 15 input phases.� = :5.
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Figure 6.57: Sensitivity of mean cell delay to the number of phases for the trace labeled
’NRL2’ and shown in Figure 6.19 usingN = 15 input phases.
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Figure 6.58: Sensitivity of cell loss probability to the number of phases for the trace
labeled ’NRL2’ and shown in Figure 6.19 usingN = 15 input phases.� = :5.

sonably well even for long lags. The accuracy of the model in capturing higher order

statistics like the bispectrum and trispectrum is not studied as such statistics are shown

to have a marginal influence on the queuing performance [17] and computing higher

order statistics is computationally intensive. Also note that further work needs to be

done for obtaining analytical expressions for computing the autocorrelation function

numerically.
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Figure 6.59: Second order statistics obtained from trace data and Pareto/Exponential
model for the trace labeled ’TIOC’ and shown in Figure 6.1.
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Figure 6.60: Second order statistics obtained from trace data and Pareto/Exponential
model for the trace labeled ’NCCOSC’ and shown in Figure 6.4.
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Figure 6.61: Second order statistics obtained from trace data and Pareto/Exponential
model for the trace labeled ’NRL1’ and shown in Figure 6.7.
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Figure 6.62: Second order statistics obtained from trace data and Pareto/Exponential
model for the trace labeled ’Phillips’ and shown in Figure 6.10.
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Figure 6.63: Second order statistics obtained from trace data and Pareto/Exponential
model for the trace labeled ’GSD’ and shown in Figure 6.13.
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Figure 6.64: Second order statistics obtained from trace data and Pareto/Exponential
model for the trace labeled ’KU’ and shown in Figure 6.16.
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Figure 6.65: Second order statistics obtained from trace data and Pareto/Exponential
model for the trace labeled ’NRL2’ and shown in Figure 6.19.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

A simple phase modulated model as well as a performance evaluation technique were

developed in this study to predict hte delay and loss performance of ATM queues. One

of the ways in which long-range dependence can manifest itself in network traffic is

the burstiness associated with the traffic process. By capturing the burstiness of the

network traffic in the form of traffic macro-dynamics, the model developed here, can

predict ATM queue performance that can be expected in future networks that may be

inherently long-range dependent in nature. Indeed, extensive trace driven simulations

performed as a part of this study using collected data traces from the AAI ATM WAN,

have shown that the simulation results match with the results predicted by the model.

The experimental evaluation of the model is done in terms of mean cell delay and cell

loss probability.

Using the developed model, the effect of traffic micro-scale dynamics on the queue-

ing performance were investigated. The results obtained from the study of micro-

dynamics indicate that the mean delay estimate is relatively invariant to the actual
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micro-dynamics, in the presence of long-range dependence. However, the cell loss

probability is found to be sensitive to micro-dynamics at low loads. At higher loads,

the bursts on the macro-scale, dominate the cell loss in the queue and the micro dynam-

ics play a minor role in the cell loss probability value obtained.

As demonstrated by the results obtained in Chapter 6, a theoretical Pareto distribu-

tion, with the appropriate shape parameter is a versatile distribution for modeling traffic

in high speed networks.

It was also noted that, the logarithm of the cell loss probability has a linear rela-

tionship (see Figure 6.44) to load in the case of exponentially distributed inter-arrival

times, but is non-linear in the case of real network trace data.

7.2 Future work

In this concluding section some recommendations for future work are proposed. The

model developed here is a simple model which effectively captures the impact of bursti-

ness in long-range dependent network traffic flows. However there is no provision for

modeling any periodicity that may be present in the input process. Due to the lack of

the periodic component, the model developed in this study is not accurate for modeling

periodic data like MPEG encoded video data. The model can be modified in the future

with the addition of this aspect.

As mentioned in Chapter 2, the CDF of the rate process in the model can be obtained

from any theoretical infinite variance probability distribution. In this study a Pareto

distribution was used. Other theoretical long-range dependent distributions should be

evaluated.

The study of the influence of traffic micro-scale dynamics on cell loss was based

on extensive simulations in this research. It will be of interest to obtain analytical
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expressions, for predicting the effect of micro-dynamics on cell loss.

Also ’hybrid models’ i.e., traffic models which the distribution of the micro-dynamics

is phase dependent, can be easily constructed in the frame work of the model developed

here. This will be of interest for cell loss estimates as it has been demonstrated in this

study that the micro-dynamics have a significant impact on the cell loss results at low

loads.
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Appendix A

Simualtion model

In this sectoin the code for the discrete queue simulator is given.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<sys/time.h>

void main(int argc, char *argv[]){

int j,flag=0,i;

char a[512];

double servrate=0, sampling_interval=0;

double slot=0,arrivals_pslot=0,slots_pint=0;

double ftime=0,frate=0;

double qlen=0,pqlen=0,aqlen=0,count=0;

94



double avrate,load;

double atint=0,tbase,tint,trand,tprev=0,aatint=0;

double no_slots=0,no_cells=0;

double aarrivals_pslot=0;

double des=0,u=0,beta,term;

FILE *fp, *FP, *Fp, *fid;

struct timeval tp;

struct timezone tzp;

/* Randomize based on the time of running the simulation*/

gettimeofday(&tp,&tzp);

fp=fopen(argv[1],"r");

FP=fopen(argv[2],"a");

Fp=fopen(argv[6],"w");

fid=fopen(argv[7],"w");

avrate=atof(argv[3]);

sampling_interval=atof(argv[4]);

load=atof(argv[5]);

servrate=avrate/load;

/* Randomize the seed here */

srand48(tp.tv_sec);
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slot=1/servrate;

slots_pint=sampling_interval/slot;

printf("%g %g %g %g\n",avrate,sampling_interval,load,servrate);

while(fgets(a,512,fp) != NULL){

sscanf(a,"%lf %lf",&ftime,&frate);

no_cells=frate*sampling_interval;

tbase=1/frate;

beta=tbase/(tbase-1);

beta= -1/beta;

for(j=0;j<=slots_pint;j++){

des=drand48();

while (atint<=slot){

u=drand48();

tint=-log(u)*tbase;

if(tint <0) puts("1:yes\n");

atint+=tint;

if (atint>slot) break;

arrivals_pslot++;

aarrivals_pslot++;

if (aarrivals_pslot >= no_cells) {

flag=1;
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break;

}

aatint+=tint;

}

no_slots++;

if(flag == 1){

flag=0;

} else {

atint-=slot;

}

qlen=pqlen+arrivals_pslot;

count++;

aqlen+=qlen;

qlen--;

if (qlen < 0) qlen=0;

pqlen=qlen;

while(atint>slot){

flag=1;

atint-=slot;

if (atint<0) break;

j++;

count++;

aqlen+=qlen;

qlen--;

if (qlen < 0) qlen=0;

pqlen=qlen;
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no_slots++;

}

if(flag==1){

flag=0;

atint+=slot;

}

/*if(atint<0) puts("yes\n");*/

arrivals_pslot=1;

aarrivals_pslot++;

/* This slot ends */

if (aarrivals_pslot>=no_cells || no_slots>=slots_pint){

if(slots_pint-no_slots>0) {

term=slots_pint-no_slots;

count+=term;

for(i=1;i<term;i++){

aqlen+=qlen;

qlen--;

if (qlen<0) qlen=0;

pqlen=qlen;

}

} else {

/* Add the remaining cells, if any at the end*/

qlen+=no_cells-aarrivals_pslot;

pqlen=qlen;

}
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fprintf(Fp,"%g %g %g %g %g %g\n",aatint,aarrivals_pslot,no_c e

ots,slots_pint,count);

aarrivals_pslot=1;

aatint=0;

no_slots=0;

break;

}

}

}

printf("%g %g %g\n", aqlen, count, aqlen/count);

fprintf(FP,"%g %g %g\n", load,aqlen/count,aqlen/(count*servrate));

fclose(fp);

fclose(FP);

}
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